Tuesday, February 23, 2021

When Hazards Are Reactive

 When Hazards Are Reactive

By Catalina9

It is a regulatory requirement that an airport or airline has a process in place for identifying hazards to aviation safety. It is also expected that an airport or airline has a proactive process or system that provides for the capture of information identified as hazards. At the time when the Safety Management System (SMS) was implemented, both airlines and airports established a reactive process to capture operational hazards as they were relaying on organizational personnel to identify and report hazards. This process in itself is a hazard, but was put in place without a risk assessment or change management analysis. The directive was simply for their personnel to head out to identify and report hazards.

Some activity is a hazard simply due to regulatory non-compliance



Within the SMS regulations, hazards are defined as a proactive process. A proactive process is to recognize an opportunity and plan a change. It is also to test the change by carrying out a small-scale study or apply your SMS random sampling process. After testing is completed, the task is to review the test, analyze the results, and identify what you have learned. The next critical step, which is a step often assumed as an unwritten rule, is to make a decision. A decision is more than decide on what path to take, it is to identify and document hazards and make a risk analysis decision. A final .step of the decision circle is to take action based on what you learned in the study step. If the change did not work, go through the cycle again with a different plan. If you were successful, incorporate what you learned from the test into wider changes. Use what you learned to plan new improvements, beginning the cycle again.

At the time of SMS implementation and when airports and airlines made their decision for operational personnel to identify and report hazards, they had overlooked the decision step. Since the step was overlooked, or ignored, they unknowingly placed their personnel in a hazardous environment. It was understandable to all that no consideration to this issue was made at that time since there were no changes to their current operational processes. Pilots were still flying airplanes the same way, ground personnel did their regular jobs, mechanics kept on fixing airplanes and airport personnel continued with their same tasks as they had done for years. In their own mind there were no change management analysis required. However, if their analysis had included a decision process, a door would have opened to the fact that SMS regulations were a new and require a change management analysis, or a safety case. Organizations, small and large, are still sending their personnel out in the minefield of hazard identification. 

At first glance it may not seem like a high risk to send personnel out looking for hazards, since they had worked in that same hazard environment prior to SMS implementation. To an extent this is true, except that SMS was a new regulation and required to come with a proactive hazard approach and personnel assigned duties are required to be trained. In addition, that all personnel were aware of the hazard environment they worked in was an assumption causing an assumed and untrue risk level. When airlines or airports are sending personnel out looking for hazards without guidance, they are accepting a risk beyond their own imagination. 

Identifying hazards is a process and like any other process which includes training and that there is a documented process to identify training requirements so that personnel are competent to perform their duties. An Accountable Executive is responsible for operations and accountable for meeting the regulatory requirements. It only takes a label, or organizational position to be accepted as an accountable executive, without any knowledge of SMS processes. The accountable executives for both airports and airlines have a responsibility to identify hazards prior to assigning personnel in their operations to identify these hazards. 

The task is to conduct a pre-hazard assessment and define the hazard as Safety Critical Areas (SCA) and Safety Critical Functions (SCF). The Safety Critical Function is a sub-category of the Safety Critical Area. It is assumed that any accountable executive has the knowledge and comprehension of their operations to develop their SCA and SCF. When a comprehensive list of SCA and SFC are developed, and personnel trained, they are qualified to go looking for hazards and report how they affect their operational tasks. An airport may assign their SCA to runways, taxiways, aprons, approaches, the runway strip etc, and assign SCF, or hazards that are common within those areas. The same concept goes for airlines, to establish SCA of ground operations, cockpit, cabin etc, and assign SCF to these areas.

Some years ago, I climbed a
tree to take a picture.
There was an inherent
risk by climbing
while the true risk
was waiting below.
   
    One question I am often asked is if a pilot or airport person, should         report the same hazard day after day and the answer is no, they             don’t. Hazards which are present daily and regularly are inherent         risks of aviation, or common cause variations and are mitigated             progressively. In addition, knowledge of these risks are learned by         obtaining a pilot license, crew training, company flight training,             airport manger certificate or other operational training. Knowing             what not to report is just as much a part of organizational hazard             training as knowing what to report. This type of training is also             commonly called Judgement Training.

    Operators without a Judgement Training program are operating with     a reactive hazard reporting system. A couple of examples would be        an aircraft leaving the gate may have to navigate different routes            from time to time due to vehicle traffic or oncoming aircraft. These       are hazards, but not expected to be reported. 

    However, if a vehicle moves in an uncomfortable proximity to the       aircraft it becomes a reportable hazard. For airport operations, snow   on  the runway, while still reported as runway surface conditions, is   also a common, or inherent risk in aviation and not to be reported as a   hazard. On the other hand, if the snow is at a rate and quantity require   the airport to close, it becomes a reportable hazard. 


Catalina9






Monday, February 8, 2021

How To Implement Aviation SMS

 How To Implement Aviation SMS

By Catalina9

There are several tools available to an enterprise to build an aviation Safety Management System (SMS) program for an airline or airport and every operator wants the best possible tool for their operations. There are several pre-built SMS online software tools available and suppliers who generally offer the same service for an enterprise to conform to their operating system. This turn-key SMS program is an efficient way to establish a regulatory compliant SMS. Both airline and airport operators are then trained by their supplier in operations of the system and what fields to complete to achieve their desired result or outcome. Using this approach an enterprise will have their SMS up and running in no time.

After SMS is operational is when hard work begins
 After their SMS system is operational is when the   hard work begins. The SMS Manager’s tasks are to   identify hazards and carry out risk management   analyses of those hazards, investigate, analyze, and   identify the cause or probable cause of all hazards,   incidents, and accidents, monitor and evaluate the   results of corrective actions and determine the   adequacy of operational and SMS training. The SMS   Manager’s main role is the role and responsibility as   the data analytics expert and managing the process of   examining data sets to find trends and draw   conclusions about the information they contain. The SMS Software program must also include tasks for compliance with the SMS Manger responsibility to monitor the concerns of the civil aviation industry in respect of safety. 

A Quality Assurance Program is also an integrated component of the Safety Management System, and it’s impossible to run one without the other. There is an ongoing discussion if it is the SMS or the QA that should be built first when building the SMS. The same question is raised to the SMS software suppliers of what approach to expect from them when they are explaining their program. After conducting several interviews with software suppliers, my observations were that most of them are task oriented by providing training in program capability, or what checkbox to click, or where communication flows, or how to sort reports, rather than provide training in how their system helps an enterprise to maintain a Quality Assurance Program (QAP).

SMS success is available with a paperless system site document
Canada was the first country to implement SMS, and their program is built on six foundations, principles, or components. These components are the Safety Management Plan, Document Management, Safety Oversight, Training, Quality Assurance and Emergency Preparedness. Each one of the components are attached to a regulatory requirement under the Canadian Aviation Regulations. Within the SMS itself is a QA component which allows for the QA to be operational if the SMS has been implemented. Without SMS the QA as a regulatory compliance component is unavailable. On the other hand, without the QA, SMS is a program without directional guidance. A dilemma when implementing the Safety Management System is to find out where to begin, or to find the first thread to pull, or where to place the first piece of a puzzle. 

Compare the processes of implementing an SMS to making bread. Making bread is a specialized process where each ingredient is to be measured, individually prepared, placed at a pre-determined place in the process, integrated with the other ingredients, or mixed, and baked at a pre-determined temperature and time. After the baking process is completed the process is to place the bread on a shelf for cooling and a quality control (QC) of the bread. Quality control is different than quality assurance but is also a prerequisite for a quality assurance program. The quality control process is not just to assess the value of the outcome but is also a quality control of each input ingredient. Before the grain is milled into flour, it goes through a quality control check, or before water is added to the equation it is also checked in a quality control process. Each one of these quality control checks should be under the umbrella of a Quality Assurance Program. 

Success is paperless site documents.
So, when we have all the ingredients to make bread, we are ready to go, right? Anyone should know how to make it, since everything that’s needed is there and available. When SMS was implemented in Canada all the ingredients were handed out, but without directions. This caused confusion, and it became easier to reject SMS than to learn about it. In addition, the path of least resistance was for operators to purchase an SMS software with tasks to click and assign. Airlines who drastically had failed a regulatory inspection would pass with flying colors with an SMS cloudbased program, but without having gained new SMS knowledge. 

The third principle, or component introduced when implementing the SMS is training, or directional control. Enterprises in Canada was given all ingredients for a successful SMS, but without directions of where to start or where to look first, they were unable to put the pieces together. Enterprises kept on failing inspections and SMS was blamed. 

When training someone to make a bread, the first step is to show the outcome, or what a bread should look like. There is a reason why products in advertising looks or behaves perfect and the same reason should be applied to bread making. A perfect product, or service, is emotionally desirable which makes it easier to recall as a positive and desired experience. After the bread is accepted as a positive outcome, the next steps are to communicate the purpose of each ingredient. The water needs to be warmed up to a temperature with very narrow tolerances or else it will destroy the live cells in the yeast. One ingredient out of place, or incorrect measured, affects the outcome of the bread. The same principles are applicable to a Safety Management System. 

The four items introduced as a possible place to start when implementing SMS are the SMS itself, QA, QC and Training. None of these stands out like a star as the perfect place to start and the fifth element of process tracing is therefore introduced. Process Tracing (PT) is where the outcome, or last step, becomes the beginning, while the first input of the process becomes the end or product outcome. At each stage, or change, in process tracing both a quality control element and a training element are introduced. When all five elements are included, an enterprise is ready to implement SMS. 

The first step when implementing SMS is training by process tracing from beginning to end. The second step is also training with process tracing to the first stage or change in process where quality control is applied and each step is traced until the end. The purpose of the QAP is to analyze the training, process tracing, how quality control performed at each step and where in the SMS regulatory requirement hierarchy these elements integrate with the Safety Management System processes. In short, implementing the SMS is a step-by-step process and applying elements as required for the process to continue. 

An effective SMS needs to be managed by an SMS cloudbased software. However, it is vital for a successful SMS that the SMS cloudbased program is implemented as a part of SMS implementation, as opposed to be implemented as a solution to recover from findings. A cloudbased safety program is a necessity to manage the Safety Management System. My experience is that there is only one exceptionally well designed, adaptable to every situation, being airline or airport, and user-friendly cloudbased program available. 


Catalina9





Identify Special Cause Variation

  Identify Special Cause Variation By OffRoadPilots S pecial cause variation, also known as assignable cause variation, refers to variation ...