Monday, May 4, 2020

CAP Complexity

CAP Complexity
By Catalina9

When the CAP is too complex for the regulator to understand they will dump it, reject it and without any attempt to analyze it, trash it. A complex CAP is nothing more than a reflection of publicly available guidance material issued by the regulator. This guidance material comes in the form of an Advisory Circular (AC).

Guidance material is communication
 The purpose of guidance material is to communicate the regulator’s expectation to the aviation industry.  An AC for a root cause method is a document which explains the root cause analysis and corrective action process to address internal audit findings or oversight inspection findings of non-compliance. A root cause AC incorporates ideas from experts in the field of causal analysis.

Each ICAO State may have different objectives, but their common goal is to ensure a level of safety in aviation that the flying public will accept. One goal a regulator publishes is to provide a safe and secure transportation system moves people and goods across the world, without loss of life, injury or damage to property. This is a goal of nice, positive and carefully selected words, but it is also an unattainable goal. In an environment of moving parts, equipment and people, damages are inevitable. A utopia of safety only exists in a regulatory and static environment. When a goal is utopia, safety is status quo where there is no room for incremental safety improvements. Since there are zero process that exists for an operation to ensure no damages, the regulator must exercise their opinions to enforce subjective compliance. If this subjective compliance is not adhered to, they take certificate actions against an aviation document. In a world where no damages are acceptable, the regulator cannot issue one single operations certificate. In a world where no damages are acceptable, it would be foolish by an operator to implement a new process without first the regulator designing and approve the process with their corporate seal. When a corporate seal is attached, the regulator has a tool to micromanage an operator, without operational responsibility. When the regulator applies an inspector’s opinions as regulatory compliance, their view is backwards looking where new systems are incompatible and an obstruction to their opinion.

Internal, or external audit findings can be at a system level or at a process level. System level findings identify both the system and the specific technical regulation that failed, and process level findings identify the process that was not functioning. To develop an effective CAP, an operator and more important, the regulator must understand the nature of the system or process deficiency which led to the finding. A finding must clearly identify which system or process allowed the non-compliance to occur. Without this clarification a corrective action plan cannot be developed.

A system may be without aim or directions for the untrained eye.
A system level finding is a finding of a process without oversight. Some of the system findings may be related to safety management system, quality assurance program, operational control system or a training program. An operational control system is applicable to an aviation document in flight operations. An airport aviation document is the airport certificate, which is issued to the airport parcel itself. An operational control tool for an airport certificate is the airport zoning regulations.

A process level finding is a finding where at least one component of a system generated an undesired outcome. A process level finding is an operational task of any system, except for the oversight system of affected process. Without oversight, or a Daily Rundown Quality Control, a process, or how things are done, are continuing to generate undesirable outcomes.

When a corrective action plan is developed, it is as effective as the operational comprehension level of the person implementing the plan. An Accountable Executive may fully comprehend the CAP, wile an inspector of the regulatory body oversight may not. It is normal for an inspector, who is not involved in the daily operations, to be at a level below comprehension of the plan. This is the exact reason why an Advisory Circular so beautifully directed their regulatory oversight inspectors to only assess the process used to come up with the CAP and not the CAP itself.

There are four levels to comprehension of a system. The first level is data, second level is information, third level is knowledge and the fourth level is comprehension. Data is collected by several means and methods. This data is then formatted and analyzed into sounds, letters or images to provide information, which again is turned into knowledge for a person to absorbed. The absorbed knowledge turns into comprehension of one system and how multiple systems interacts. It is unreasonable and unjust to expect that a regulatory oversight inspector comprehends the operational systems of airlines and airports.   

A short-term corrective action plan is to immediately design and implement the plan. This immediate plan could be as simple as schedule training to be completed within 30 days. A long-term corrective action plan is a change of policy or a process change to design a plan to be implemented within a reasonable timeframe. A long-term winter operations CAP might take a year to be implemented, while a short term could be to clear the snow that day. Without defined timelines the long-term CAP does not exist, no matter how well the plan is written. 

Facts give you directions.
A root cause analysis is fundamental to the design of a corrective action plan. Questions to ask when developing a CAP is to ask the 5-W’s and How; What, when, where, why, who and how.
The What question is to establish the facts. The When question is to establish a timeline. The Where question is to establish a location. The Why question is to populate the events as defined in the What question. The Who question is to define a position within the organization as defined in the Where question. The How question is to answer the events as defined in the Why question. When asked correctly, the How question takes you backwards in the process to the Fork In The Road where a different decision would have lead down a different path. This does not ensure that an incident would not have happened if this path was taken. All it does is to take a different path than the path that lead to an incident.

The 5-Why is a recognized root cause analysis. However, if the Why question is asked incorrectly the root cause statement becomes an incorrect answer. The Why question must be asked how it relates to the How question.

Another element to be analyzed within a root cause analysis are the four causal factors, or factors that affected the root cause statement. Depending on organizational operations and policies, these factors may be expanded to include other and specific operational factors. The four are the Human Factors, Organizational Factors, Supervision Factors and Environmental Factors. When analysed in a root cause analysis each factor is assigned a weight-factor in a matrix of the 5-W’s and How. The factor with the highs weight factor then becomes the determining, and priority factor in the root cause analysis.

When applying this comprehensive approach to the CAP and root cause analysis it should be expected that the process is too complex for someone who are not daily involved in operations. Additional supplementary information of the CAP could be to design a flowchart of how each item in the system affects other items with an expected outcome. This design must be simple and directed to specifics of the Fork In The Road where multiple options are available. When submitting a CAP to the regulatory oversight body, being the regulator or Accountable Executive, it is vital for operational success that reasoning for the CAP is supported by data.  
     


Catalina9

No comments:

Post a Comment

Identify Special Cause Variation

  Identify Special Cause Variation By OffRoadPilots S pecial cause variation, also known as assignable cause variation, refers to variation ...